If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+12t+3=0
a = 2; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·2·3
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{30}}{2*2}=\frac{-12-2\sqrt{30}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{30}}{2*2}=\frac{-12+2\sqrt{30}}{4} $
| 87=f-562 | | 4r=271 | | 7(a-1)=84 | | -24+2x=4 | | g=698=124 | | 84=-6(2-2x) | | 6y-4y+y=6 | | s+61=952 | | 28.55-130=x | | -28+p=21 | | 8x+4=542 | | 10(4a-4)=-5a-32 | | j+557=320 | | 82=1+3(3b+3) | | 207=9k | | 8+3x=2x+2 | | w+729=954 | | 4x-2(x-3)=5+2(1+3x) | | 2(2x-5)=4+4+2x | | Y=-51x=3x=2 | | 142x=4x-11+3x | | h-39=633 | | 23+x=50 | | (x-8)=14 | | 9(x-11)=11 | | 81m^2=16 | | 5(3x+3)=30x+15 | | 61433/700=23/5(33/7b-7/5 | | 6x-9=(2x+8) | | -2(4x+7)=2x-4 | | 3(4-6x)=102 | | r+9/4(-7r+7/5)=1833/20 |